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1. Introduction

Understanding the physics of the big bang is one of the key questions facing string theory.

Past work on cosmological singularities suggests that perturbative string theory breaks

down near the singularity [1 – 6]. See [7 – 9, 24, 26] for some related work. What is needed

is a different formulation of physics in the regime of strong gravity near the singularity,

perhaps via holography.

Such dual descriptions, in the spirit of AdS/CFT, have been studied in [8, 10, 11].

Recently, dual descriptions of the light-like linear dilaton and related solutions have been

described in [12 – 21] via Matrix theory [22]. These backgrounds always contain a region

with a cosmological singularity where perturbative string theory breaks down.

The aim of this work is to extend these ideas to the null-brane solution. The null-

brane is constructed as a quotient of flat space, R
1,3. The quotient action is generated by

an element of the Poincaré group containing a boost, a rotation and a shift. When viewed as

a quotient space, the metric is flat. However, when expressed in more natural coordinates,

the resulting metric is not flat but generalizes the flux-brane solutions corresponding to

Melvin universes. Instead of just a magnetic field (as in the Melvin case), there are both

electric and magnetic fields. This class of space-time is therefore a sort of Melvin universe

with electric fields. In [23, 24], this space-time was termed a “null-brane.”
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Figure 1: The circle radius shrinks to a minimum L at x+ = 0.

The basic structure of the space-time is depicted in figure 1. There is a circle whose

radius shrinks as we increase x+ until it reaches size L at x+ = 0. The size, L, is a tunable

modulus in the metric. Viewing x+ as light-cone time, we see that a particle becomes

blue-shifted as time evolves by an amount that increases with decreasing L. The singular

limit corresponds to taking L → 0. The resulting singular space has been considered in [1].

From this perspective, the background is light-cone time-dependent.

The aim of this work is to find a DLCQ description of the null-brane. We should

note that for non-zero L this space-time has the following virtues. First, there are no

pathologies: neither curvature singularities nor closed causal curves. Second, there is a

null killing vector which facilitates string quantization. A space-time with these properties

serves as a good perturbative string background with an S-matrix. Indeed, string scattering

has been studied on this background [25, 2, 26]. However, on taking the limit L → 0, the

space-time develops a null singularity. This is an added feature that allows us to access

the physics of a big crunch/big bang singularity in what we might hope is a controlled

manner.

In section 2, we define the null-brane quotient and study M-theory and string theory

compactified on this background at the level of supergravity. In section 3, we describe

a decoupling limit that captures the DLCQ physics of the null-brane. In section 4, we

derive the Matrix description of M-theory on the null-brane for the case N = 1 of a single

D-brane using the DBI action. This model is already quite fascinating: it looks like a

1 + 1-dimensional field theory on a cylinder whose radius is time-dependent. In the far

past and the far future, the cylinder shrinks to zero size. The cylinder reaches a maximum

radius at x+ = 0 proportional to 1/L which diverges as L → 0. This is quite reminiscent

– 2 –
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of the way in which Milne space appeared as the string worldsheet in [12]. It should be

contrasted with the holographic description of branes wrapping the null-brane which gives

a space-time-dependent non-commutative field theory [10].

We then proceed to conjecture the complete non-abelian answer for many branes using

results based in part on the quotient description of the null-brane and in part on the DBI

approach. We then present some additional arguments suggesting that our final Matrix

Lagrangian is complete.

2. Defining the background

2.1 The orbifold group

We define our background as follows: consider R
1,3 parametrized by coordinates

x± =
1√
2
(x0 ± x1), x, z,

with the usual metric ds2 = −2dx+dx− + dx2 + dz2. We act on these coordinates by an

element of the 4-dimensional Poincaré group:

g = exp(2πiK); K =
λ√
2
(J0x + J1x) + LP z, (2.1)

where L has dimensions of length. This is the only scale beyond the Planck scale in our

setup. Under this action which depends on (λ,L),

X =




x+

x−

x

z


 → g · X =




x+

x− + 2πλx + 2π2λ2x+

x + 2πλx+

z + 2πL


 . (2.2)

The parameter λ can be set to one by a light-cone boost

x+ → x+

λ
, x− → λx−. (2.3)

For most of our discussion, we will assume λ = 1 except when we discuss decoupling in

section 3.2. The length squared of closed curves can be easily computed,

(gn · X − X)2 = (2πnx+)2 + (2πnL)2 > 0 . (2.4)

There are no closed causal curves. For sufficiently low energy scattering, we therefore

need not worry about effects from large back reaction invalidating perturbative string

computations.

It is worth stressing that four of the ten Poincaré generators are unbroken – those that

commute with K. These are

P+, P z, K, K̃ =
1√
2
(J0z + J1z) + LP x.
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A quotient group element g acts on the momenta in the following way:

P =




p+

p−

px

pz


 ; g · P =




p+

p− + 2πpx + 2π2p+

px + 2πp+

pz


 . (2.5)

We note that for this orbifold, it is not the case that any point with x+ < 0 is in the causal

past of every point with x+ > 0. To check this, we compute
(
X − gn · X̃

)2
= −2∆x+∆x− + (∆x)2 + (2πn)2x+x̃+ + 2(2πn)(x+x̃ − xx̃+)

+(∆z)2 − 2(2πn)L∆z + (2πn)2L2,
(2.6)

where ∆xµ = xµ − x̃µ. At large n, we have (2πn)2(x+x̃+ + L2), so only points with

x+x̃+ < −L2 are always causally related in this way.

The orbifold action lifts to the spin bundle over R
1,3. To determine the number of

preserved supersymmetries, we need to count the number of spinors, ε, left invariant by

(the lift of) K. The P z term in K does not act on a spinor. In terms of standard real

gamma matrices, Γµ, satisfying the Clifford algebra relations,

{Γµ,Γν} = ηµν , µ, ν = 0, . . . , 10,

it is easy to check that the invariance condition,

(
Γ0x + Γ1x

)
ε = 0, (2.7)

implies that

Γ+ε = 0. (2.8)

This background therefore preserves one-half of the available supersymmetry. To construct

a string or M-theory background, we simply append an additional flat R
6 or R

7 factor to

give a 10 or 11-dimensional metric.

2.2 The null-brane background

It is natural to express the metric in terms of new variables in which the quotient action

simplifies. This choice of coordinates makes it easy to reduce along orbits of K. Let us

perform the following change of variables:

x̂+ = x+, x̂− = x− − zx

L
+

z2x+

2L2
, x̂ = x − zx+

L
, ẑ =

z

L
. (2.9)

The hatted x-coordinates are natural because they are invariant under the action of K.

The group element g of equation (2.1) acts only by translation on ẑ sending

ẑ → ẑ + 2π.

In these coordinates, the metric takes the form

ds2 = −2dx̂+dx̂− + dx̂2 + ((x̂+)2 + L2)dẑ2 + 2(x̂+dx̂ − x̂dx̂+)dẑ. (2.10)

This metric was obtained by a coordinate change from flat space so there is no curvature.
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2.3 M-theory on the null-brane

Let us consider M-theory on this space-time and reduce to type IIA on the ẑ circle. We

obtain a solution similar to a flux-brane, but with a null RR 1-form field strength. After

massaging (2.10) into the standard form for determining the string metric, we see that the

flat 11-dimensional metric becomes:

ds2
11 = −2dx+dx− + dx2 + dz2 + (ds7)

2

= −2dx̂+dx̂− − x̂2

Λ (dx̂+)2 + 2x̂x̂+

Λ dx̂dx̂+ + Λ
(
dẑ + x̂+

Λ dx̂ − x̂
Λdx̂+

)2

+L2

Λ dx̂2 + (ds7)
2

(2.11)

where

Λ = (x̂+)2 + L2. (2.12)

To obtain the string frame metric, we use the usual relation

ds2
11 = e4φ/3(dẑ + A)2 + e−2φ/3ds2

10 (2.13)

where ds2
10 is the string frame metric, and A is the RR 1-form. Using this relation, we read

off the following string metric, dilaton, and RR 1-form potential:

ds2
10 = Λ1/2

{
−2dx̂+dx̂− − x̂2

Λ
(dx̂+)2 +

2x̂x̂+

Λ
dx̂dx̂+ +

L2

Λ
dx̂2 + (ds7)

2

}
(2.14)

φ =
3

4
log Λ (2.15)

A =
(
x̂+dx̂ − x̂dx̂+

)
/Λ. (2.16)

The field strength F associated to A is null,

F =
2L2

Λ2
dx̂+ ∧ dx̂,

which is the reason for the terminology “null-brane” given in [23]. Note that the string

coupling becomes small at x̂+ = 0 when we take L → 0.

2.4 Type II string theory on the null-brane

We now turn to type II string theory quotiented by the action (2.2), or equivalently with

the metric (2.10). We have no B-field and no RR fields. The dilaton is constant, gs = eΦ0 .

What happens as L becomes small compared to the string scale? It seems wise to see what

duality at the level of the supergravity solution can teach us.

In the limit where L → 0, the metric develops a singularity at x̂+ = 0 which is basically

the ẑ circle shrinking to zero size resulting in a closed null curve. It is natural to therefore

T-dualize along ẑ which results in the metric (see, for example, [28])

ds2
T−dual = −2dx+dx− − x2

L2 + (x+)2
(dx+)2 + 2

x+x

L2 + (x+)2
dx+dx

+
L2

L2 + (x+)2
dx2 +

1

L2 + (x+)2
dz̃2 (2.17)

– 5 –
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where the T-dual coordinate z̃ still has a period of 2π (we use units where α′ = 1 for the

moment). We have dropped the hats for the T-dual variables. There are also B-fields

generated

B+z̃ =
x

L2 + (x+)2
, (2.18)

Bz̃x =
x+

L2 + (x+)2
,

and the dilaton is no longer constant,

Φ = Φ0 −
1

2
ln

(
L2 + (x+)2

)
,

g̃s =
gs√

L2 + (x+)2
. (2.19)

The first thing to note is that if we hold gs fixed and take L → 0, the dual coupling diverges

at x+ = 0. From the original quotient group perspective, this corresponds to going over to

the parabolic orbifold studied in [29, 1].

The B-field gives a field strength whose only non-vanishing component is

H+xz̃ = − 2L2

(L2 + (x+)2)2
. (2.20)

This field strength diverges as L → 0 at x+ → 0. This is intriguing and suggests the

existence of a kind of critical theory of closed strings in a large light-light B-field. There is

a strong analogy with open strings in a light-like constant 2-form field strength, and there

might well be a relation with the non-relativistic strings studied in [27]. The metric (2.17)

is now curved with non-vanishing curvature components:

R+z̃+
z̃ = L2−2(x+)2

(L2+(x+)2)2
, R+x+

x =
3L2

(L2 + (x+)2)2
,

R+x+
− = 3L2x+x

(L2+(x+)2)3
, R+xx

− =
3L4

(L2 + (x+)2)3
,

R++ = 4L2−2(x+)2

(L2+(x+)2)2
, R = 0. (2.21)

It is not hard to check that this dilaton, H-field and Ricci tensor combine to give a good

string background with vanishing beta functions as we expect. It is also worth noting that

as L → 0 with x+ À L, H → 0, but the string coupling and curvature are still nontrivial:

g̃s → gs

|x+| , R++ → − 2

(x+)2
. (2.22)

Finally, we would like to lift this configuration to M-theory. This is natural if we

consider type IIA on the metric (2.17), and we choose to hold gs fixed but consider L →
0. Let y denote the coordinate of the M-theory circle, we then obtain the following 11-

dimensional solution:

ds2
11 = (gs)

− 2

3

{
L2 + (x+)2

} 1

3 ds2
T−dual + (gs)

4

3

{
L2 + (x+)2

}− 2

3 dy2, (2.23)

=
(
gs{L2 + (x+)2}

)− 2

3
[
−2

{
L2 + (x+)2

}
dx+dx− − x2(dx+)2

+ 2x+xdx+dx + L2dx2 + dz̃2 + g2
sdy2

]
,

– 6 –
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and a longitudinal 3-form potential,

C+z̃y =
2

3

x

L2 + (x+)2
, (2.24)

Cz̃xy =
2

3

x+

L2 + (x+)2
,

with 4-form field strength

G+xz̃y = −4

3

L2

{L2 + (x+)2}2 . (2.25)

The curvature of the metric can be computed. We will quote only the Ricci tensor whose

non-vanishing component is

R++ =
8L2 − 12(x+)2

{L2 + (x+)2}2 . (2.26)

The Ricci scalar vanishes as before. Lastly, note that had we considered type IIB on (2.17),

it would have been natural to use S-duality when the coupling becomes large.

3. The DLCQ description

3.1 Light-like to space-like compactification

We first note that the action of p+ commutes with the null-brane quotient (2.2). This

means we can compactify the x̂− direction,

x̂− ∼ x̂− + R, (3.1)

and consider the sector with fixed light-cone momentum p̂+ = N/R.

We cannot relate this light-like compactification to a space-like compactification using

the procedure of [30] because the metric (2.10) depends explicitly on x̂+. However, we can

use the modified procedure of [12]. Choose a direction x̂1 and make the identifications

(
x̂+, x̂−, x̂1

)
∼

(
x̂+, x̂−, x̂1

)
+ (0, R, εR) . (3.2)

The Lorentz transformation

x̂+ = X+, x̂− =
X+

2ε2
+ X− +

X1

ε
, x̂1 =

X+

ε
+ X1, x̂i = Xi i > 1, (3.3)

while holding fixed L and

z = Z, (3.4)

results in the M-theory metric

ds2
11 = −2dX+dX−+dX2+

(
(X+)2 + L2

)
dZ2+2

(
X+dX − XdX+

)
dZ+

7∑

i=1

(dXi)2 (3.5)

with the identifications

Z ∼ Z + 2π, X1 ∼ X1 + εR. (3.6)

There are N units of momentum in the X1 direction.
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We reduce to type IIA on the X1 circle. This is a straightforward reduction which

leaves us with type IIA on a space with metric

ds2
10 = −2dX+dX−+dX2+

(
(X+)2 + L2

)
dZ2+2

(
X+dX − XdX+

)
dZ+

7∑

i=2

(dXi)2 (3.7)

and N D0-branes. This is the theory of N D0-branes on the null-brane quotient.

We can also arrive at this same conclusion by directly studying the orbifold action (2.2).

It is easy to check that the identification

(
x+, x−, x1

)
∼

(
x+, x−, x1

)
+ (0, R, εR) (3.8)

commutes with the orbifold action. After making the same Lorentz transformation given

in (3.3), the DLCQ identification becomes

X1 ∼ X1 + εR. (3.9)

Using either approach, we reduce the study of the light-like compactified null-brane in M-

theory to the study of the dynamics of N D0-branes on the null-brane quotient. Our task

in section 4 is to determine this theory.

3.2 A decoupling limit

Note, however, that this procedure does not result in a decoupling limit because the trans-

formation (3.3) does not involve a rescaling of x̂+ so the corresponding light-cone energy

p̂− does not become small.

To obtain a decoupling limit, we need to perform an additional transformation. Let

us return to the orbifold description (2.2) with λ a free parameter. First note that the

identification (3.8) implies that

p+ = εp1 (3.10)

if we stay in the DLCQ sector with fixed N .

The Lorentz transformation (3.3) applied to the flat space variables takes us to a space-

like circle but does not scale the light-cone energy E−. Rather the energy and momenta

transform in the following way

E− → E− +
p+

2ε2
− p1

ε
, p+ → p+, p1 → p1 − p+

ε
. (3.11)

The mass shell condition,

−2E−p+ + pipi + m2 = 0, (3.12)

together with the relation (3.10) implies that pi ∼ O(ε) while p+ ∼ O(ε2) and E− ∼ O(1).

The null-brane quotient determined by λ is unchanged but X1 satisfies the condition (3.9).

We now boost to rescale our energies sending

X+ → εX+, X− → X−

ε
. (3.13)
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This has the effect of sending λ → ελ while leaving L invariant. All energies and momenta

are now of order ε. Reducing to type IIA string theory on X1 gives us type IIA string

theory with

gs ∼ ε3/2, `s ∼ ε−1/2 (3.14)

and a flat metric quotiented by the null-brane identification with parameters (λ,L) where

λ ∼ ε.

We can now change to invariant coordinates using (2.9) now including factors of λ. It

is easy to find the resulting metric

ds2 = −2dx̂+dx̂− + dx̂2 + ({λx̂+}2 + L2)dẑ2 + 2λ(x̂+dx̂ − x̂dx̂+)dẑ + dx̂idx̂i. (3.15)

By rescaling ẑ, we see that this metric really depends on the combination L/ελ. For

the moment, however, we choose to keep ẑ dimensionless with canonical period 2π. These

scalings define a decoupling limit for M-theory on the null-brane quotient. String oscillators

decouple because our characteristic energy εE− is much smaller than the string scale given

in (3.14). Closed strings also decouple because the 10-dimensional Newton constant is

becoming small at these energies,

g2
s

(
εE−`s

)8 → 0,

as ε → 0. We will apply these scalings to the theory of D0-branes on the null-brane in the

following section.

4. D-branes on the null-brane

4.1 Decoupling the DBI action

An analysis of boundary states in the null-brane appears in [31]. Our goal in this section

is to derive the gauge theory describing the dynamics of N D0-branes on the null-brane.

The natural approach to use is the orbifold description of the null-brane given by the

identification (2.2). This turns out to be subtle for reasons we will describe later. Therefore,

we first consider the abelian case with N = 1 where we can use the DBI action.

We start with type IIA string theory with a single D0-brane moving on a space-time

with metric (3.15) where, for the moment, we do not decouple. A T-duality along ẑ

converts the D0-brane to a D-string wrapped along the T-dual direction z. On performing

this T-duality, we find

ds2 = −λ2x2

Λ
(dx+)2 − 2dx+dx− +

2λ2x+x

Λ
dx+dx +

L2

Λ
dx2 +

(α′)2

Λ
dz2 + dxidxi,

B =
2α′

Λ

(
−xdx+ + x+dx

)
∧ dz,

e2Φ =
α′g2

s

Λ
, (4.1)

where

Λ = L2 + λ2(x+)2, (4.2)

and z is again dimensionless with period 2π.
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The DBI action is given by

S = − 1

α′

∫
dτdσe−Φ

√
− det [(Gµν + Bµν) ∂aXµ∂bXν + 2πα′Fab]. (4.3)

Evaluating this action on the solution (4.1) gives

S = − 1

gs(α′)
3

2

∫
dτdσ

{
−Λ

[(
−λ2x2

Λ
(ẋ+)2 − 2ẋ+ẋ− +

2λ2x+x

Λ
ẋ+ẋ +

L2

Λ
ẋ2 +

(α′)2

Λ
ż2 + ẋiẋi

)

×
(
−λ2x2

Λ
(x+′)2 − 2x+′x−′ +

2λ2x+x

Λ
x+′x′ +

L2

Λ
(x′)2 +

(α′)2

Λ
(z′)2 + xi′xi′

)

−
(
−λ2x2

Λ
ẋ+x+′−ẋ+x−′−ẋ−x+′+

λ2x+x

Λ
ẋ+x′ +

λ2x+x

Λ
ẋx+′+

L2

Λ
ẋx′+

(α′)2

Λ
żz′ + ẋixi′

)2

+

(
−λα′x

Λ
ẋ+z′ +

λα′x

Λ
żx+′ +

λα′x+

Λ
ẋz′ − λα′x+

Λ
żx′ + 2πα′F

)2
]} 1

2

. (4.4)

Note that a prime denotes a σ derivative while a dot denotes a τ derivative. We now make

the gauge choice

z = σ (4.5)

so σ has period 2π. The action (4.4) simplifies to:

S = − 1

gs(α′)
3
2

∫
dτdσ {(α′)2[

(
2ẋ+ẋ− − ẋ2 − ẋiẋi

)
+ 4πλF

(
xẋ+ − x+ẋ

)

−4π2ΛF 2] + . . . }
1

2 , (4.6)

where the dots represent terms that are either sixth order in the xµ, or are L2 times

something fourth order in xµ, each with precisely two τ derivatives and two σ derivatives.

Next we use our gauge freedom to set

x+ = cτ/
√

2 (4.7)

where c is a constant. We expand around the static configuration x+ = x− = cτ/
√

2 by

substituting x− = cτ/
√

2 +
√

2y where y is a fluctuation. The result is

S = − 1

gs(α′)
3

2

∫
dτdσ

{
(α′)2

[(
c2 + 2cẏ − ẋ2 − ẋiẋi

)
+ 2

√
2πλcF (x − τ ẋ) − 4π2ΛF 2

]

+
1

2
λ2c2x2(x′)2 + L2c2(x′)2 + 2L2cẏ(x′)2 − L2ẋiẋi(x′)2 +

1

2
λ2c2x2xi′xi′ (4.8)

+c2Λxi′xi′ + 2cΛẏxi′xi′ − λ2c2τxẋxi′xi′ − L2ẋ2xi′xi′ − Λẋiẋixj′xj′ + c2Λ(y′)2

−λ2c3τxy′x′−2L2cẋy′x′−2cΛẋiy′xi′+λ2c2τxẋix′xi′+2L2ẋẋix′xi′+Λẋiẋjxi′xj′
} 1

2 .

We can now apply the decoupling limit discussed in section 3.2. In this limit, our

parameters scale as follows:

gs(α
′)

3

2 → gs(α
′)

3

2 ,

α′ → ε−1α′, (4.9)

λ → ελ.
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In this decoupling limit, our space-time energy E− is O(ε). We want to consider energies

of O(1) in this gauge theory so in (4.7), we choose c = 1/λ which scales like ε−1. Energies

with respect to this choice of world-volume time τ are finite. With these choices, we find

that

S = − 1

gs

√
α′

∫
dτdσ

{
1

ε2
+

1

ε
ẏ − 1

2

(
ẏ2 + ẋ2 + ẋiẋi

)
+

√
2π (x − τ ẋ)F − 2π2ΛF 2

+
1

2(α′)2
(
L2(x′)2 + Λ

(
(y′)2 + xi′xi′

))
+ O(ε)

}
, (4.10)

now written in terms of non-scaling quantities. Note that Λ = 1
2τ2 + L2 is finite. We can

drop the first two terms (a constant and a total τ derivative), and the omitted higher terms

which vanish when ε → 0 leaving an action which does not scale.

The dimension assignments in (4.10) are as follows: the scalar fields y, x, xi have

length dimension one, as does τ while σ is dimensionless. Aτ has mass dimension one,

while Aσ is dimensionless so that F has uniform mass dimension one. We will rescale these

fields to assign canonical dimensions after discussing the non-abelian generalization. Note

that the SO(6) symmetry acting on the xi is enhanced to an SO(7) acting on (xi, y).

4.2 A non-abelian generalization

Although we used the DBI action to find the DLCQ description for the N = 1 case, the

natural approach would have been to employ the orbifold description of the null-brane

given by the identification (2.2). Because the quotient action involves a boost, we will

meet some interesting subtleties in trying to use this approach.

Let us try to proceed straightforwardly: to describe the theory of N D-branes on the

null-brane, we go to the covering space of the quotient group action Γ = Z, and consider

a collection of (N × |Γ|) × (N × |Γ|) matrices Xµ. The |Γ| = ∞ label indexes the image

branes needed to assure invariance under the quotient action. In fact, these matrices can

be viewed as operators on a Hilbert space H = Γ ⊗ C
N . This picture will be useful below

when we want to do a Fourier transformation to a new basis for H.

There are U(N × |Γ|) gauge transformations that act on these matrices. We must

impose certain constraints both on the matrices Xµ as well as on the gauge transformations

to ensure that everything is invariant under the quotient action.

Let us first ignore dynamics and treat the Euclidean D-brane problem, or equivalently

the pure matrix problem. To implement the invariance constraints, let us first define partial

matrix elements Xµ
mn = 〈m|Xµ|n〉 which are N × N Hermitian matrices. Now the action

of the kth quotient group element is easy to understand. Since the group element acts by

the representation ρ where ρ(k)|n〉 = |n + k〉, we see that

(
ρ(k)†Xµρ(k)

)
mn

= Xµ
m+k,n+k.

The constraints on the matrices then become

X+,i
m+k,n+k = X+,i

mn,
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Xm+k,n+k = Xmn + 2πλkX+
mn, (4.11)

X−
m+k,n+k = X−

mn + 2πλkXmn + 2π2λ2k2X+
mn,

Zm+k,n+k = Zmn + 2πkLδmn.

The residual gauge transformations are the elements of U(N × |Γ|) which commute with

ρ(k) for all k. Using notation similar to that used above, this simply says that we restrict

to unitary matrices U satisfying Um+k,n+k = Umn. The action constructed from these

matrices is the usual one,

S =
1

4gs(α′)2
Tr [Xµ,Xν ]2 . (4.12)

If we were to study Euclidean D0-branes or D-instantons on the null-brane then we

would proceed to solve these pure matrix constraints. The solution of these constraints

is presented in the appendix. We, however, would like to describe dynamical branes, and

for this we need to write down a matrix quantum mechanics for the transverse degrees of

freedom. Conventionally, for static situations, one essentially identifies the worldvolume

time with the spacetime coordinate X0 and writes an action for the remaining bosons,

S =
1

2gs(α′)
3

2

∫
dτ Tr

(
D0X

iD0X
i +

1

2

[
Xi,Xj

] [
Xi,Xj

]
+ fermions

)
, (4.13)

where i and j run from one to nine and D0X = ∂τX + i[A0,X]. In our case however, this

formulation is not useful since the quotient identification mixes the spacetime coordinates

Xi with X0. It is simple to write a covariant version of (4.13) in flat space, however.

S =
1

2gs(α′)
3

2

∫
dτ Tr

(
ηµνD0X

µD0X
ν +

1

2
[Xµ,Xν ] [Xµ,Xν ] + fermions

)
, (4.14)

Now one has only to impose a gauge choice consistent with the equations of motion to

eliminate one of the matrices. For instance in the static case one may choose a gauge X0
mn =

τδmn to reproduce (4.13). This choice is of course not compatible with the constraints that

we wish to impose. The solution to the constraints for the covariant matrices is provided

in the appendix and is given, after a Fourier transformation (note that this procedure

essentially turns Z into a covariant derivative, including a component of the gauge field,

so there is no need to impose any additional gauge fixing) and a field redefinition, by

X+,i = x+,i,

X = x +
iλ

2

{
x+,D1

}
, (4.15)

X− = x− +
iλ

2
{x,D1} −

λ2

2
D1 · x+ · D1,

Z = z + iL∂θ = iLD1.

Here, the lower case fields are hermitian N × N matrix functions of τ and θ, where θ is

identified, with period 2π. These fields are all gauge covariant except for z which transforms

as z → uzu† + iLu∂θu
†, so that D1 is a covariant derivative (in particular x and x−

correspond to x̃ and x̃− in the appendix).
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By plugging these expressions into (4.14), one can verify that taking
√

2x± = τ ± y

with y a fluctuating field, is a valid gauge choice in that it is consistent with the equations

of motion. Note that this choice is not the usual static gauge because the matrix X− and

hence X0 is a complicated differential operator. Now consider what happens when we take

the decoupling limit given in (4.9) which sends λ → ελ and τ → τ/ε. This gives

X+ =
τ√
2ε

+
y√
2
,

X = x +
iλ√
2
τD1, (4.16)

X− =
τ√
2ε

− y√
2

+
iλε

2
{x,D1} −

λ2ε

2
√

2
τD2

1 − λ2ε2

2
√

2
D1 · y · D1,

Z = iLD1. (4.17)

The covariant kinetic terms then become,

ηµνD0X
µD0X

ν = − 1

ε2
+ (D0y)2 − λ√

2
{x, F} + (D0x)2 +

λ√
2
τ {D0x, F}

+
λ2

2
τ2F 2 + O(ε). (4.18)

Note also that the terms of order ε−1 drop out of commutators, so in the ε → 0 limit we

need only keep track of the order ε0 pieces above when computing the commutator squared

terms. The result is that (4.14) becomes, up to an additive constant,

S = 1
2g2

Y M

∫
dσdτ Tr

(
(D0x

i)2 + (D0y)2 + (D0x)2 − L2(D1x
i)2 − L2(D1y)2 − L2(D1x)2

−
√

2(x − τD0x)F + (L2 +
1

2
τ2)F 2 +

1

2

[
xi, xj

]2
+

[
y, xi

]2

+(
[
x, xi

]
+

iτ√
2
D1x

i)2 + ([x, y] +
iτ√
2
D1y)2 + fermions

)
. (4.19)

Since all the parameters are now finite, we have rescaled θ by a factor of
√

α′ to canonical

length dimension 1, all the fields to canonical mass dimension 1, and defined g2
Y M = gs/α

′.

Finally, we have set α′ = 1 for convenience. Note that (xi, y) are rotated by an SO(7)

symmetry and therefore should be combined.

There are a few points worth emphasizing: first, a large gauge transformation along

the θ circle simply implements the shift

z → z + 2πL. (4.20)

In terms of the original variables and their gauge transformation properties given in (A.7),

this large gauge transformation implements the quotient identification. This lagrangian

(4.19) describes M-theory on the null-brane. However, in agreement with the supergravity

solution (2.15), the model is described by a kind of Matrix string theory [32 – 34] near

τ = 0. On the other hand, as |τ | → ∞, fluctuations in θ are suppressed and the model

reduces to quantum mechanics. A detailed study of the dynamics of this model will appear

elsewhere.
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If we wish to describe perturbative string theory on the null-brane then we need to

compactify additional directions in the usual way [35] and study higher dimensional gen-

eralizations of (4.19). This is particularly interesting for type IIB string theory on the

null-brane since the conventional IIB Matrix description [36] is promoted from a 2 + 1 to

a 3 + 1-dimensional field theory. Lastly, we note that studying D-branes on this kind of

quotient space gives a theory that should be closely connected to the dipole models of [37],

perhaps with a time-dependent dipole. It would be interesting to make this connection

precise.
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A. Euclidean D0-branes on the null-brane

In this appendix, we solve the matrix constraints (4.11) to obtain an action for Euclidean

D0-branes or D-instantons probing the null-brane. This action has been independently

obtained recently in [9]. We should note that the analytic continuation to Euclidean space

needed to describe D-instanton configurations is not straightforward for the null-brane. It

is unclear whether physical amplitudes in type II string theory can really receive quantum

corrections from these kinds of D-instantons. For us, however, the solution of the pure

matrix problem is an intermediate step on the road to describing dynamical D-branes.

We wish to solve the pure matrix constraints (4.11). Solving these constraints allows

one to express the matrices Xµ
mn in terms of just Xµ

m0. These latter matrices are the

residual degrees of freedom. A more convenient picture is obtained by changing basis, from

|n〉 to

|θ〉 =
∑

k

e2πikθ|k〉, (A.1)

where now 0 ≤ θ ≤ 1. The inner product is 〈θ′|θ〉 = δ(θ − θ′), and the identity can be

written as

Id =

∫
dθ|θ〉〈θ|.

By rewriting the probe theory in this way, our matrices become functions of a single periodic

variable θ. In other words, we have effectively implemented a T-duality along the quotient

direction to obtain a theory of D-instantons in the T-dual geometry. This is very much

along the lines used in [35] to describe circle compactifications.

Let us define matrix elements with respect to this new basis,

Xµ(θ, θ′) ≡ 〈θ|Xµ|θ′〉 =
∑

m,n

e2πi(nθ′−mθ)Xµ
mn. (A.2)
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The solution to the Xµ constraints is then given by,

X+,i(θ, θ′) = x+,i(θ)δ(θ − θ′),

X(θ, θ′) =
[
x(θ) + ix+(θ)∂θ

]
δ(θ − θ′), (A.3)

X−(θ, θ′) =

[
x−(θ) + ix(θ)∂θ −

1

2
x+(θ)∂2

θ

]
δ(θ − θ′),

Z(θ, θ′) = [z(θ) + iL∂θ] δ(θ − θ′),

where for each Xµ we have defined

xµ(θ) ≡
∑

k

e−2πikθXµ
k0. (A.4)

Each of these operators is local in θ in the sense that they can be written as A(θ, θ′) =

Â(θ)δ(θ − θ′) for some operator Â(θ). For any two operators A, B which are local in this

sense it is easy to check that

(A · B)(θ, θ′) = Â(θ) · B̂(θ) · δ(θ − θ′),

so we can multiply operators locally. We will also drop any hats, since it will be clear from

the number of parameters which object we mean.

There is a problem in this setup, however; the N×N matrices xµ(θ) are not necessarily

Hermitian. Indeed, as an example consider

[x(θ)]† =

[
∑

k

e−2πikθXk0

]†

=
∑

k

e2πikθX†
0k =

∑

k

e2πikθ
[
X†

−k,0 + 2πkX+
−k,0

†
]

= x(θ) − ix+(θ)′, (A.5)

where a prime represents differentiation with respect to θ. To fix this problem we can

define operators

x̃(θ) = x(θ) − i

2
x+(θ)′, (A.6)

x̃−(θ) = x−(θ) − i

2
x(θ)′ − 1

4
x+(θ)′′,

which are Hermitian.

The gauge transformations acting on our fields are

x+ → ux+u†, (A.7)

xi → uxiu†,

x̃ → ux̃u† +
i

2

(
ux+u′† − u′x+u†

)
,

x̃− → ux̃−u† +
i

2

(
ux̃u′† − u′x̃u†

)
− 1

4

(
ux+u′′† + ux+′

u′† + u′x+′
u† + u′′x+u†

)
,

z → uzu† + iLuu′†
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where u = u(θ) is a unitary N ×N matrix. We could define gauge covariant combinations

x̂ = x̃ − 1

2L

{
x+, z

}
, (A.8)

x̂− = x̃− − 1

2L
{x̂, z} − i

4L

[
x+′, z

]
− i

4L

[
x+, z′

]
− 1

2
zx+z.

but they do not simplify the action in general, so we will continue to use the gauge variant

variables.

In terms of these variables we can then compute the commutators. We find (dropping

tildes and delta functions)

[
X+,X

]
= [x+, x] − i

2
{x+, x+′}, (A.9)

[
X+,X−

]
= [x+, x−] +

i

2

(
[x+, x′] − 2xx+′

)
+

1

2

(
(x+′

)2 + x+x+′′
)

+i[x+, x]∂ +
1

2
{x+, x+′}∂,

[
X+, Z

]
= [x+, z] − iLx+′

,
[
X+,Xi

]
= [x+, xi],

[
X,X−

]
= [x, x−] − i

2
{x, x′} +

1

4

(
{x+′

, x′} + 2xx+′′
)

+
i

2

(
[x+′

, x−] + 2x+x−′
)

+
i

4

(
x+′

x+′′
+ x+x+′′′

)

−1

2

(
[x+, x′] − 2xx+′

)
∂ + i[x+, x−]∂ +

i

2

(
(x+′

)2 + x+x+′′
)

∂

−1

2
[x+, x]∂2 +

i

4
{x+, x+′}∂2,

[X,Z] = [x, z] +
i

2

(
[x+′

, z] + 2x+z′
)
− iLx′ +

1

2
Lx+′′

+ i[x+, z]∂ + Lx+′
∂,

[
X,Xi

]
= [x, xi] +

i

2

(
[x+′

, xi] + 2x+xi′
)

+ i[x+, xi]∂,

[
X−, Z

]
= [x−, z] − iLx−′

+
1

2
Lx′′ +

i

2

(
[x′, z] + 2xz′

)
− 1

2

(
x+′

z′ + x+z′′
)

+ Lx′∂

+
i

2
Lx+′′

∂ + i[x, z]∂ − 1

2

(
[x+′

, z] + 2x+z′
)

∂ +
i

2
Lx+′

∂2 − 1

2
[x+, z]∂2,

[
X−,Xi

]
= [x−, xi] +

i

2

(
[x′, xi] + 2xxi′

)
− 1

2

(
x+′

xi′ + x+xi′′
)

+i[x, xi]∂ − 1

2

(
[x+′

, xi] + 2x+xi′
)

∂ − 1

2
[x+, xi]∂2,

[
Z,Xi

]
= [z, xi] + iLxi′,

[
Xi,Xj

]
= [xi, xj ],

where all of the xµ are functions of θ, primes represent differentiation with respect to θ,

and ∂ = ∂
∂θ . The action for the pure matrix theory is then given by a trace of commutators

squared,

S =
1

4gs(α′)2

∫
dθ Tr [Xµ,Xν ]2 , (A.10)
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and notably involves higher derivative interactions.

This action is quite complicated in the non-abelian case. However, the result simplifies

immensely for the abelian case since all commutators drop out. The result is

S =
1

2gs(α′)2

∫
dθ

{(
L2+(x+)2

) (
2x+′x−′−

(
xi′

)2
)
−L2

(
x′

)2−2x+xx+′x′+x2
(
x+′

)2

+2L
(
x+x′−xx+′

)
z′−(x+)2

(
z′

)2− 1

4
L2

(
x+′′

)2
+x+

(
x+′

)2
x+′′+

1

2

(
x+

)2
x+′x+′′′

+
1

4

(
x+′

)4
+

1

4

(
x+

)2 (
x+′′

)2
}

. (A.11)

This action is gauge invariant, as can be seen by switching to gauge invariant coordinates

x̂ = x − L−1zx+, (A.12)

x̂− = x− − L−1zx +
1

2
L−2z2x+.

In terms of these variables the action is

S =
1

2gs(α′)2

∫
dθ

{(
L2+(x+)2

) (
2x+′x̂−′−

(
xi′

)2
)
−L2

(
x̂′

)2−2x+x̂x+′x̂′+x̂2
(
x+′

)2

−1

4
L2

(
x+′′

)2
+x+

(
x+′

)2
x+′′+

1

2

(
x+

)2
x+′x+′′′+

1

4

(
x+′

)4
+

1

4

(
x+

)2 (
x+′′

)2
}

,(A.13)

which is manifestly gauge invariant since the only charged field, z, drops out. In fact the

two derivative terms in this action are exactly what one would obtain using DBI for the

case of a Euclidean D0-brane wrapping the T-dual geometry.
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